Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Ticks Tick Borne Dis ; 15(2): 102308, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215632

RESUMO

Borrelia burgdorferi is a tick-borne spirochete that causes Lyme disease in humans. The host immune system controls the abundance of the spirochete in the host tissues. Recent work with immunocompetent Mus musculus mice strain C3H/HeJ found that males had a higher tissue infection prevalence and spirochete load compared to females. The purpose of this study was to determine whether host sex and acquired immunity interact to influence the prevalence and abundance of spirochetes in the tissues of the commonly used mouse strain C57BL/6. Wildtype (WT) mice and their SCID counterparts (C57BL/6) were experimentally infected with B. burgdorferi via tick bite. Ear biopsies were sampled at weeks 4, 8, and 12 post-infection (PI) and five tissues (left ear, ventral skin, heart, tibiotarsal joint of left hind leg, and liver) were collected at necropsy (16 weeks PI). The mean spirochete load in the tissues of the SCID mice was 260.4x higher compared to the WT mice. In WT mice, the infection prevalence in the ventral skin was significantly higher in males (40.0 %) compared to females (0.0 %), and the spirochete load in the rear tibiotarsal joint was significantly higher (4.3x) in males compared to females. In SCID mice, the spirochete load in the ventral skin was 200.0x higher in males compared to females, but there were no significant sex-specific difference in spirochete load in the other tissues (left ear, heart, tibiotarsal joint, or liver). Thus, the absence of acquired immunity greatly amplified the spirochete load in the ventral skin of male mice. It is important to note that the observed sex-specific differences in laboratory mice cannot be extrapolated to humans. Future studies should investigate the mechanisms underlying the male bias in the abundance of B. burgdorferi in the mouse skin.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Humanos , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Endogâmicos C3H
2.
Microbiol Spectr ; : e0167523, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676027

RESUMO

Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, Borrelia afzelii, causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two B. afzelii strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that B. afzelii strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete Borrelia afzelii, which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both B. afzelii strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.

3.
PLoS Pathog ; 19(8): e1011572, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607182

RESUMO

Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Camundongos , Camundongos Endogâmicos C3H , Larva
4.
Ticks Tick Borne Dis ; 13(6): 102058, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36288683

RESUMO

Lyme borreliosis is caused by the spirochete Borrelia burgdorferi and is transmitted among vertebrate hosts by Ixodes scapularis ticks in eastern North America. Treatment with topical corticosteroids increases the abundance of B. burgdorferi in the skin of lab mice that have been experimentally infected via needle inoculation. In the present study, female and male C3H/HeJ mice were infected with B. burgdorferi via nymphal tick bite. Infected mice were treated with clobetasol on the skin of the right hindleg on days 35 and 36 post-infection and euthanized at days -2, 1, 3, 5, and 7 post-treatment; a group of control mice was infected but not treated with clobetasol. The spirochete abundance was quantified in 8 mouse tissues including bladder, heart, left hindleg skin, right hindleg skin, dorsal skin, ventral skin, left ear and right ear. Averaged across the 8 mouse tissues, the abundance of B. burgdorferi on days 3 and 5 were 21.4x and 14.4x higher in mice treated with clobetasol compared to the untreated control mice, but there were large differences among tissues. There was a dramatic sex-specific effect of the clobetasol treatment; the peak abundance of B. burgdorferi in the skin (left hindleg, right hindleg, dorsal, ventral) was 72.6x higher in male mice compared to female mice. In contrast, there was little difference between the sexes in the tissue spirochete load in the ears, bladder, and heart. Topical application of clobetasol could increase the sensitivity of direct diagnostic methods (e.g., culture, PCR) to detect B. burgdorferi in host skin biopsies.

5.
BMC Vet Res ; 18(1): 96, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277172

RESUMO

BACKGROUND: Parvoviral enteritis (PE) is a viral gastrointestinal (GI) infection of dogs. Recovery from PE has been associated with persistent GI signs later in life. The objectives of this study were: (i) To determine whether dogs that have recovered from PE (post-parvo dogs) had an increased risk of persistent GI signs compared to uninfected control dogs. (ii) To investigate the lifestyle and clinicopathologic factors that are associated with persistent GI signs in post-parvo dogs. METHODS: A total of 86 post-parvo dogs and 52 age-matched control dogs were enrolled in this retrospective cohort study. Many years after hospitalization for PE, the owners were interviewed about the health and habits of their dogs using a questionnaire. We used generalized linear mixed effects models to test whether parvovirus enteritis and other risk factors are associated with owner-recognized general health problems in all dogs and with owner-recognized persistent GI signs in post-parvo dogs. RESULTS: The prevalence of persistent GI signs was significantly higher in post-parvo dogs compared to control dogs (57% vs 25%, P < 0.001). Markers of disease severity at the time of hospital admission such as neutropenia, low body temperature (BT), and treatment with an antiemetic medication (metoclopramide) were significant risk factors for persistent GI signs in post-parvo dogs. For example, PE-affected dogs that were hypothermic at hospital admission (BT of 37.2 °C) were 16.6 × more likely to have GI signs later in life compared to hyperthermic dogs (BT of 40.4 °C). The presence of persistent GI signs in post-parvo dogs was a risk factor for health problems in other organ systems. CONCLUSIONS: Parvovirus enteritis is a significant risk factor for persistent GI signs in dogs highlighting the importance of prevention. The risk factors identified in the present study may guide future investigations on the mechanisms that link parvovirus enteritis to chronic health problems in dogs.


Assuntos
Doenças do Cão , Enterite , Infecções por Parvoviridae , Parvovirus Canino , Parvovirus , Animais , Doenças do Cão/tratamento farmacológico , Cães , Enterite/tratamento farmacológico , Enterite/epidemiologia , Enterite/veterinária , Humanos , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Estudos Retrospectivos , Fatores de Risco
6.
Parasit Vectors ; 14(1): 570, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749794

RESUMO

BACKGROUND: The tick Ixodes ricinus is an important vector of tick-borne diseases including Lyme borreliosis. In continental Europe, the nymphal stage of I. ricinus often has a bimodal phenology with a large spring peak and a smaller fall peak. There is consensus about the origin of the spring nymphal peak, but there are two alternative hypotheses for the fall nymphal peak. In the direct development hypothesis, larvae quest as nymphs in the fall of the same year that they obtained their larval blood meal. In the developmental diapause hypothesis, larvae overwinter in the engorged state and quest as nymphs one year after they obtained their larval blood meal. These two hypotheses make different predictions about the time lags that separate the larval blood meal and the density of questing nymphs (DON) in the spring and fall. METHODS: Inter-annual variation in seed production (masting) by deciduous trees is a time-lagged index for the density of vertebrate hosts (e.g., rodents) which provide blood meals for larval ticks. We used a long-term data set on the masting of the European beech tree and a 15-year study on the DON at 4 different elevation sites in western Switzerland to differentiate between the two alternative hypotheses for the origin of the fall nymphal peak. RESULTS: Questing I. ricinus nymphs had a bimodal phenology at the three lower elevation sites, but a unimodal phenology at the top elevation site. At the lower elevation sites, the DON in the fall was strongly correlated with the DON in the spring of the following year. The inter-annual variation in the densities of I. ricinus nymphs in the fall and spring was best explained by a 1-year versus a 2-year time lag with the beech tree masting index. Fall nymphs had higher fat content than spring nymphs indicating that they were younger. All these observations are consistent with the direct development hypothesis for the fall peak of I. ricinus nymphs at our study site. Our study provides new insight into the complex bimodal phenology of this important disease vector. CONCLUSIONS: Public health officials in Europe should be aware that following a strong mast year, the DON will increase 1 year later in the fall and 2 years later in the spring. Studies of I. ricinus populations with a bimodal phenology should consider that the spring and fall peak in the same calendar year represent different generations of ticks.


Assuntos
Fagus/parasitologia , Ixodes/crescimento & desenvolvimento , Animais , Vetores Aracnídeos/crescimento & desenvolvimento , Europa (Continente) , Larva/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Densidade Demográfica , Estações do Ano , Árvores/parasitologia
8.
Appl Environ Microbiol ; 87(18): e0064121, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34191531

RESUMO

The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii, which causes Lyme borreliosis in Europe, and the bacterial microbiome of Ixodes ricinus, its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a low bacterial abundance and a changed bacterial microbiome compared to those of the control larvae. Dysbiosed and control larvae fed on B. afzelii-infected mice and uninfected control mice, and the engorged larvae were left to molt into nymphs. The nymphs were tested for B. afzelii infection, and their bacterial microbiome underwent 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii, as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome than the control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii, which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens such as B. afzelii. We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to that of control larvae. These larvae fed on B. afzelii-infected mice, and the resultant nymphs were tested for B. afzelii and for their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii. In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.


Assuntos
Grupo Borrelia Burgdorferi , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Etanol , Feminino , Larva/microbiologia , Camundongos Endogâmicos BALB C , Microbiota , Ninfa/microbiologia , Óvulo , Hipoclorito de Sódio , Esterilização
9.
Sci Rep ; 11(1): 10686, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021230

RESUMO

Arthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.


Assuntos
Grupo Borrelia Burgdorferi , Insetos Vetores/microbiologia , Ixodes/microbiologia , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Aptidão Física , Animais , Anticorpos Antibacterianos/imunologia , Grupo Borrelia Burgdorferi/imunologia , Modelos Animais de Doenças , Reservatórios de Doenças/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina G/imunologia , Ixodes/crescimento & desenvolvimento , Larva/microbiologia , Estágios do Ciclo de Vida , Doença de Lyme/imunologia , Camundongos , Prevalência , Picadas de Carrapatos
10.
ISME J ; 15(8): 2390-2400, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33658621

RESUMO

Pathogen species often consist of genetically distinct strains, which can establish mixed infections or coinfections in the host. In coinfections, interactions between pathogen strains can have important consequences for their transmission success. We used the tick-borne bacterium Borrelia afzelii, which is the most common cause of Lyme disease in Europe, as a model multi-strain pathogen to investigate the relationship between coinfection, competition between strains, and strain-specific transmission success. Mus musculus mice were infected with one or two strains of B. afzelii, strain transmission success was measured by feeding ticks on mice, and the distribution of each strain in six different mouse organs and the ticks was measured using qPCR. Coinfection and competition reduced the tissue infection prevalence of both strains and changed their bacterial abundance in some tissues. Coinfection and competition also reduced the transmission success of the B. afzelii strains from the infected hosts to feeding ticks. The ability of the B. afzelii strains to establish infection in the host tissues was strongly correlated with their transmission success to the tick vector. Our study demonstrates that coinfection and competition between pathogen strains inside the host tissues can have major consequences for their transmission success.


Assuntos
Grupo Borrelia Burgdorferi , Coinfecção , Ixodes , Doença de Lyme , Animais , Grupo Borrelia Burgdorferi/genética , Europa (Continente) , Camundongos
11.
Artigo em Inglês | MEDLINE | ID: mdl-31737577

RESUMO

Gardnerella spp. are hallmarks of bacterial vaginosis, a clinically significant dysbiosis of the vaginal microbiome. Gardnerella has four subgroups (A, B, C, and D) based on cpn60 sequences. Multiple subgroups are often detected in individual women, and interactions between these subgroups are expected to influence their population dynamics and associated clinical signs and symptoms of bacterial vaginosis. In the present study, contact-independent and contact-dependent interactions between the four Gardnerella subgroups were investigated in vitro. The cell free supernatants of mono- and co-cultures had no effect on growth rates of the Gardnerella subgroups suggesting that there are no contact-independent interactions (and no contest competition). For contact-dependent interactions, mixed communities of 2, 3, or 4 subgroups were created and the initial (0 h) and final population sizes (48 h) were quantified using subgroup-specific PCR. Compared to the null hypothesis of neutral interactions, most (69.3%) of the mixed communities exhibited competition. Competition reduced the growth rates of subgroups A, B, and C. In contrast, the growth rate of subgroup D increased in the presence of the other subgroups. All subgroups were able to form biofilm alone and in mixed communities. Our study suggests that there is scramble competition among Gardnerella subgroups, which likely contributes to the observed distributions of Gardnerella spp. in vaginal microbiomes and the formation of the multispecies biofilms characteristic of bacterial vaginosis.


Assuntos
Gardnerella/fisiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Interações Microbianas , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Biofilmes , Feminino , Humanos , Metagenoma , Metagenômica/métodos , Microbiota , RNA Ribossômico 16S
12.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540991

RESUMO

Multistrain microbial pathogens often induce strain-specific antibody responses in their vertebrate hosts. Mothers can transmit antibodies to their offspring, which can provide short-term, strain-specific protection against infection. Few experimental studies have investigated this phenomenon for multiple strains of zoonotic pathogens occurring in wildlife reservoir hosts. The tick-borne bacterium Borrelia afzelii causes Lyme disease in Europe and consists of multiple strains that cycle between the tick vector (Ixodes ricinus) and vertebrate hosts, such as the bank vole (Myodes glareolus). We used a controlled experiment to show that female bank voles infected with B. afzelii via tick bite transmit protective antibodies to their offspring. To test the specificity of protection, the offspring were challenged using a natural tick bite challenge with either the maternal strain to which the mothers had been exposed or a different strain. The maternal antibodies protected the offspring against a homologous infectious challenge but not against a heterologous infectious challenge. The offspring from the uninfected control mothers were equally susceptible to both strains. Borrelia outer surface protein C (OspC) is an antigen that is known to induce strain-specific immunity. Maternal antibodies in the offspring reacted more strongly with homologous than with heterologous recombinant OspC, but other antigens may also mediate strain-specific immunity. Our study shows that maternal antibodies provide strain-specific protection against B. afzelii in an ecologically important rodent reservoir host. The transmission of maternal antibodies may have important consequences for the epidemiology of multistrain pathogens in nature.IMPORTANCE Many microbial pathogen populations consist of multiple strains that induce strain-specific antibody responses in their vertebrate hosts. Females can transmit these antibodies to their offspring, thereby providing them with short-term strain-specific protection against microbial pathogens. We investigated this phenomenon using multiple strains of the tick-borne microbial pathogen Borrelia afzelii and its natural rodent reservoir host, the bank vole, as a model system. We found that female bank voles infected with B. afzelii transmitted to their offspring maternal antibodies that provided highly efficient but strain-specific protection against a natural tick bite challenge. The transgenerational transfer of antibodies could be a mechanism that maintains the high strain diversity of this tick-borne pathogen in nature.


Assuntos
Anticorpos Antiprotozoários/imunologia , Arvicolinae , Grupo Borrelia Burgdorferi/fisiologia , Imunidade Materno-Adquirida/imunologia , Doença de Lyme/imunologia , Doenças dos Roedores/imunologia , Zoonoses/imunologia , Animais , Doença de Lyme/parasitologia , Doenças dos Roedores/parasitologia , Zoonoses/parasitologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31921706

RESUMO

Vector-borne pathogens often consist of genetically distinct strains that can establish co-infections in the vertebrate host and the arthropod vector. Co-infections (or mixed infections) can result in competitive interactions between strains with important consequences for strain abundance and transmission. Here we used the spirochete bacterium, Borrelia afzelii, as a model system to investigate the interactions between strains inside its tick vector, Ixodes ricinus. Larvae were fed on mice infected with either one or two strains of B. afzelii. Engorged larvae were allowed to molt into nymphs that were subsequently exposed to three seasonal treatments (artificial summer, artificial winter, and natural winter), which differed in temperature and light conditions. We used strain-specific qPCRs to quantify the presence and abundance of each strain in the immature ticks. Co-infection in the mice reduced host-to-tick transmission to larval ticks and this effect was maintained in the resultant nymphs at 1 and 4 months after the larva-to-nymph molt. Competition between strains in co-infected ticks reduced the abundance of both strains. This inter-strain competition occurred in the three life stages that we investigated: engorged larvae, recently molted nymphs, and overwintered nymphs. The abundance of B. afzelii in the nymphs declined by 40.5% over a period of 3 months, but this phenomenon was not influenced by the seasonal treatment. Future studies should investigate whether inter-strain competition in the tick influences the subsequent strain-specific transmission success from the tick to the vertebrate host.


Assuntos
Antibiose/fisiologia , Grupo Borrelia Burgdorferi/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Vetores Artrópodes/microbiologia , Grupo Borrelia Burgdorferi/classificação , Reservatórios de Doenças/microbiologia , Larva/microbiologia , Doença de Lyme/microbiologia , Camundongos , Ninfa/microbiologia , Estações do Ano , Doenças Transmitidas por Vetores/microbiologia
14.
Transbound Emerg Dis ; 66(2): 1054-1062, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30554475

RESUMO

Many viruses that cause serious and often fatal disease in humans have spilled over from bats. Recent evidence suggests that stress may enhance virus shedding by bats increasing the possibility of transmission to other species. To understand the reasons for spillover is therefore important to determine the molecular pathways that link stress to virus reactivation and shedding in bats. We recently isolated and characterized a gammaherpesvirus (Eptesicus fuscus herpesvirus, EfHV) autochthonous to North American big brown bats. Since herpesviruses are known to reactivate from latent infections in response to a wide variety of stressors, EfHV presents us with an opportunity to study how physiological, behavioural or environmental changes may influence the big brown bats' relationship with EfHV. To understand the biology of the virus and how the extended periods of torpor experienced by these bats during hibernation along with the stress of arousal might influence the virus-host relationship, we attempted to detect the virus in the blood of wild-caught non-hibernating bats as well as captive bats arising from hibernation. We compared the prevalence of EfHV in the blood (using PCR) and EfHV-specific antibodies (using ELISA) between captive hibernating bats and wild-caught non-hibernating bats. We detected EfHV only in the blood of captive hibernating bats (27.8% = 10/36) and not in wild-caught non-hibernating bats (0.0% = 0/43). In contrast, the EfHV-specific antibody titres were higher in the non-hibernating bats compared to the hibernating bats. Our study suggests that: (a) viral DNA in blood indicates reactivation from latency, (b) long periods of hibernation lead to suppression of immunity, (c) stress of arousal from hibernation reactivates the virus in bats with lower levels of anti-viral immunity (indicated by humoral immune response), and (d) levels of anti-viral immunity increase in non-hibernating bats following reactivation.


Assuntos
Nível de Alerta/fisiologia , Quirópteros/virologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Hibernação/fisiologia , Ativação Viral/fisiologia , Animais , Anticorpos Antivirais/sangue , DNA Viral/sangue , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Masculino , Reação em Cadeia da Polimerase/veterinária
15.
Proc Biol Sci ; 285(1890)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381382

RESUMO

Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.


Assuntos
Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Vetores Aracnídeos/microbiologia , Grupo Borrelia Burgdorferi/classificação , Grupo Borrelia Burgdorferi/genética , Feminino , Ixodes/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Doença de Lyme/microbiologia , Camundongos Endogâmicos BALB C
16.
Parasit Vectors ; 11(1): 364, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29941016

RESUMO

BACKGROUND: Ixodes ricinus is the most important vector of tick-borne diseases in Europe. A better knowledge of its genome and transcriptome is important for developing control strategies. Previous transcriptomic studies of I. ricinus have focused on gene expression during the blood meal in specific tissues. To obtain a broader picture of changes in gene expression during the blood meal, our study analysed the transcriptome at the level of the whole body for both nymphal and adult ticks. Ixodes ricinus ticks from a highly inbred colony at the University of Neuchâtel were used. We also analysed previously published RNAseq studies to compare the genetic variation between three wild strains and three laboratory strains, including the strain from Neuchâtel. RESULTS: RNA was extracted from whole tick bodies and the cDNA was sequenced, producing 162,872,698 paired-end reads. Our reference transcriptome contained 179,316 contigs, of which 31% were annotated using Trinotate. Gene expression was compared between ticks that differed by feeding status (unfed vs partially fed). We found that blood-feeding in nymphs and female adult ticks increased the expression of cuticle-associated genes. Using a set of 3866 single nucleotide polymorphisms to calculate the heterozygosity, we found that the wild tick populations of I. ricinus had much higher levels of heterozygosity than the three laboratory populations. CONCLUSION: Using high throughput strand-oriented sequencing for whole ticks in different stages and feeding conditions, we obtained a de novo assembly that significantly increased the genomic resources available for I. ricinus. Our study illustrates the importance of analysing the transcriptome at the level of the whole body to gain additional insights into how gene expression changes over the life-cycle of an organism. Our comparison of several RNAseq datasets shows the power of transcriptomic data to accurately characterize genetic polymorphism and for comparing different populations or sources of sequencing material.


Assuntos
Genoma , Ixodes/genética , Ninfa/genética , Polimorfismo Genético , Animais , Sangue , Vetores de Doenças , Europa (Continente) , Feminino , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Ixodes/fisiologia , Refeições , Ninfa/fisiologia , Análise de Sequência de RNA
17.
Sci Rep ; 7(1): 16719, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196626

RESUMO

In vector-borne diseases, the skin plays an essential role in the transmission of vector-borne pathogens between the vertebrate host and blood-feeding arthropods and in pathogen persistence. Borrelia burgdorferi sensu lato is a tick-borne bacterium that causes Lyme borreliosis (LB) in humans. This pathogen may establish a long-lasting infection in its natural vertebrate host where it can persist in the skin and some other organs. Using a mouse model, we demonstrate that Borrelia targets the skin regardless of the route of inoculation, and can persist there at low densities that are difficult to detect via qPCR, but that were infective for blood-feeding ticks. Application of immunosuppressive dermocorticoids at 40 days post-infection (PI) significantly enhanced the Borrelia population size in the mouse skin. We used non-targeted (Ge-LC-MS/MS) and targeted (SRM-MS) proteomics to detect several Borrelia-specific proteins in the mouse skin at 40 days PI. Detected Borrelia proteins included flagellin, VlsE and GAPDH. An important problem in LB is the lack of diagnosis methods capable of detecting active infection in humans suffering from disseminated LB. The identification of Borrelia proteins in skin biopsies may provide new approaches for assessing active infection in disseminated manifestations.


Assuntos
Proteínas de Bactérias/análise , Borrelia/metabolismo , Doença de Lyme/diagnóstico , Corticosteroides/farmacologia , Animais , Proteínas de Bactérias/genética , Borrelia/isolamento & purificação , Borrelia/patogenicidade , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/metabolismo , Feminino , Flagelina/análise , Ixodes/microbiologia , Ixodes/patogenicidade , Doença de Lyme/microbiologia , Doença de Lyme/veterinária , Camundongos , Camundongos Endogâmicos C3H , Peptídeos/análise , Reação em Cadeia da Polimerase em Tempo Real , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/parasitologia , Espectrometria de Massas em Tandem
18.
Sci Rep ; 7(1): 5956, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729557

RESUMO

Emerging infectious diseases can drive host populations to extinction and are a major driver of biodiversity loss. Controlling diseases and mitigating their impacts is therefore a priority for conservation science and practice. Chytridiomycosis is a devastating disease of amphibians that is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), and for which there is an urgent need to develop mitigation methods. We treated tadpoles of the common midwife toad (Alytes obstetricans) with antifungal agents using a capture-treat-release approach in the field. Antifungal treatment during the spring reduced the prevalence of Bd in the cohort of tadpoles that had overwintered and reduced transmission of Bd from this cohort to the uninfected young-of-the-year cohort. Unfortunately, the mitigation was only transient, and the antifungal treatment was unable to prevent the rapid spread of Bd through the young-of-the year cohort. During the winter, Bd prevalence reached 100% in both the control and treated ponds. In the following spring, no effects of treatment were detectable anymore. We conclude that the sporadic application of antifungal agents in the present study was not sufficient for the long-term and large-scale control of Bd in this amphibian system.


Assuntos
Anfíbios/microbiologia , Antifúngicos/farmacologia , Quitridiomicetos/fisiologia , Animais , Carga Bacteriana/efeitos dos fármacos , Larva/microbiologia , Modelos Biológicos , Micoses/microbiologia , Lagoas , Prevalência , Estações do Ano , Temperatura , Fatores de Tempo
19.
Sci Rep ; 7(1): 5006, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694446

RESUMO

Vector-borne pathogens establish systemic infections in host tissues to maximize transmission to arthropod vectors. Co-feeding transmission occurs when the pathogen is transferred between infected and naive vectors that feed in close spatiotemporal proximity on a host that has not yet developed a systemic infection. Borrelia afzelii is a tick-borne spirochete bacterium that causes Lyme borreliosis (LB) and is capable of co-feeding transmission. Whether ticks that acquire LB pathogens via co-feeding are actually infectious to vertebrate hosts has never been tested. We created nymphs that had been experimentally infected as larvae with B. afzelii via co-feeding or systemic transmission, and compared their performance over one complete LB life cycle. Co-feeding nymphs had a spirochete load that was 26 times lower than systemic nymphs but both nymphs were highly infectious to mice (i.e., probability of nymph-to-host transmission of B. afzelii was ~100%). The mode of transmission had no effect on the other infection phenotypes of the LB life cycle. Ticks that acquire B. afzelii via co-feeding transmission are highly infectious to rodents, and the resulting rodent infection is highly infectious to larval ticks. This is the first study to show that B. afzelii can use co-feeding transmission to complete its life cycle.


Assuntos
Ração Animal/microbiologia , Doença de Lyme/transmissão , Carrapatos/microbiologia , Animais , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Reservatórios de Doenças/microbiologia , Estágios do Ciclo de Vida , Doença de Lyme/microbiologia , Camundongos , Ninfa/microbiologia , Ninfa/fisiologia , Carrapatos/fisiologia
20.
BMC Vet Res ; 13(1): 217, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693561

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is an important tick-borne disease in Europe. Detection of the TBE virus (TBEV) in local populations of Ixodes ricinus ticks is the most reliable proof that a given area is at risk for TBE, but this approach is time-consuming and expensive. A cheaper and simpler approach is to use immunology-based methods to screen vertebrate hosts for TBEV-specific antibodies and subsequently test the tick populations at locations with seropositive animals. RESULTS: The purpose of the present study was to use goats as sentinel animals to identify new risk areas for TBE in the canton of Valais in Switzerland. A total of 4114 individual goat sera were screened for TBEV-specific antibodies using immunological methods. According to our ELISA assay, 175 goat sera reacted strongly with TBEV antigen, resulting in a seroprevalence rate of 4.3%. The serum neutralization test confirmed that 70 of the 173 ELISA-positive sera had neutralizing antibodies against TBEV. Most of the 26 seropositive goat flocks were detected in the known risk areas in the canton of Valais, with some spread into the connecting valley of Saas and to the east of the town of Brig. One seropositive site was 60 km to the west of the known TBEV-endemic area. At two of the three locations where goats were seropositive, the local tick populations also tested positive for TBEV. CONCLUSION: The combined approach of screening vertebrate hosts for TBEV-specific antibodies followed by testing the local tick population for TBEV allowed us to detect two new TBEV foci in the canton of Valais. The present study showed that goats are useful sentinel animals for the detection of new TBEV risk areas.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/veterinária , Doenças das Cabras/epidemiologia , Animais , Anticorpos Antivirais/sangue , Encefalite Transmitida por Carrapatos/sangue , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/sangue , Doenças das Cabras/virologia , Cabras , Ixodes/virologia , Masculino , Vigilância de Evento Sentinela/veterinária , Estudos Soroepidemiológicos , Suíça/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...